On the Equidistribution of Sums of Independent Random Variables

نویسنده

  • HERBERT ROBBINS
چکیده

where the constant M (A) is the mean value of A(x) as defined in the theory of almost periodic functions. Let it) —feitxdFix) denote the characteristic function of the X's. Concerning the roots of the equation o5(¿) = 1 one of the three following cases must hold. Case 1 ("General" case), (pit) = 1 if and only if t = 0. Case 2 ("Lattice" case). <p(f) is not identically equal to 1 but there exists a value ¿of^O such that #(/0) = 1. All the mass of F(x) is then concentrated at one or more of the points x = 2kir/t0 (A = 0, ±1, • • • ). It can be shown that there exists a largest positive number ß, 0 <ß < o», such that all the mass of F(x) is concentrated at one or more of the points x = A/3, and the number ß has the property that <Pit) = l if and only if t = 2kir/ß (A = 0, ±1, • • • ). Case 3 (Trivial case). <p(i) = l for all t. All the mass of F(x) is then concentrated at x = 0 and all the 5„ are identically 0. The distinction among these three cases is fundamental in what follows. Let F(x) be arbitrary but fixed. We define the mean value operator M (A) for certain complex-valued functions A(x) of a real variable x, — «j <x < oo, as follows. Case 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Sato-Tate Equidistribution of Kurlberg-Rudnick Sums-1 Sato-Tate Equidistribution of Kurlberg-Rudnick Sums

We prove equidistribution results for certain exponential sums that arise in the work of Kurlberg-Rudnick on "cat maps". We show (Theorems 1 and 2) that suitable normalizations of these sums behave like the traces of random matrices in SU(2). We also show that as a suitable parameter varies, the corresponding sums are statistically independent (Theorems 3 and 4). The main tools are Deligne's Eq...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

On the Complete Convergence ofWeighted Sums for Dependent Random Variables

We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010